Authors: Alper Idrisoglu, Ana Luiza Dallora Moraes, Abbas Cheddad, Peter Anderberg, Andreas Jakobsson, Johan Sanmartin Berglund
Abstract:
Abstract
Vowel-based voice analysis is gaining attention as a potential non-invasive tool for COPD classification, offering insights into phonatory function. The growing need for voice data has necessitated the adoption of various techniques, including segmentation, to augment existing datasets for training comprehensive Machine Learning (ML) modelsThis study aims to investigate the possible effects of segmentation of the utterance of vowel "a" on the performance of ML classifiers CatBoost (CB), Random Forest (RF), and Support Vector Machine (SVM). This research involves training individual ML models using three distinct dataset constructions: full-sequence, segment-wise, and group-wise, derived from the utterance of the vowel "a" which consists of 1058 recordings belonging to 48 participants. This approach comprehensively analyzes how each data categorization impacts the model's performance and results. A nested cross-validation (nCV) approach was implemented with grid search for hyperparameter optimization. This rigorous methodology was employed to minimize overfitting risks and maximize model performance. Compared to the full-sequence dataset, the findings indicate that the second segment yielded higher results within the four-segment category. Specifically, the CB model achieved superior accuracy, attaining 97.8% and 84.6% on the validation and test sets, respectively. The same category for the CB model also demonstrated the best balance regarding true positive rate (TPR) and true negative rate (TNR), making it the most clinically effective choice. These findings suggest that time-sensitive properties in vowel production are important for COPD classification and that segmentation can aid in capturing these properties. Despite these promising results, the dataset size and demographic homogeneity limit generalizability, highlighting areas for future research.
Trial registration The study is registered on clinicaltrials.gov with ID: NCT06160674.